Fuzzy granular gravitational clustering algorithm for multivariate data
نویسندگان
چکیده
A new method for finding fuzzy information granules from multivariate data through a gravitational inspired clustering algorithm is proposed in this paper. The proposed algorithm incorporates the theory of granular computing, which adapts the cluster size with respect to the context of the given data. Via an inspiration in Newton’s law of universal gravitation, both conditions of clustering similar data and adapting to the size of each granule are achieved. This paper compares the Fuzzy Granular Gravitational Clustering Algorithm (FGGCA) against other clustering techniques on two grounds: classification accuracy, and clustering validity indices, e.g. Rand, FM, Davies–Bouldin, Dunn, Homogeneity, and Separation. The FGGCA is tested with multiple benchmark classification datasets, such as Iris, Wine, Seeds, and Glass identification. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Developing new Adaptive Neuro-Fuzzy Inference System models to predict granular soil groutability
Three Neuro-Fuzzy Inference Systems (ANFIS) including Grid Partitioning (GP), Subtractive Clustering (SCM) and Fuzzy C-means clustering Methods (FCM) have been used to predict the groutability of granular soil samples with cement-based grouts. Laboratory data from related available in litterature was used for the tests. Several parameters were taken into account in the proposed models: water:ce...
متن کاملFUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملGeneralizations of Fuzzy C-Means Algorithm to Granular Feature Spaces, based on Underlying Metrics: Issues and Related Works
This paper considers dissimilarity measures and clustering techniques for two special cases of set-defined objects: fuzzy granules and subsequence time series. To deal with clustering of such kind of objects, we propose two implementations that generalize the Fuzzy C-Means algorithm to granular feature spaces. Granular computing is a paradigm oriented towards capturing and processing meaningful...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 279 شماره
صفحات -
تاریخ انتشار 2014